Accelerating MCMC algorithms by breaking detailed balance

Konstantin Turitsyn

T-4 & CNLS, Los Alamos National Laboratory Landau Institute for Theoretical Physics, Moscow

In collaboration with

Misha Chertkov (LANL) Marija Vucelja (Weizmann)

http://arXiv.org/abs/0809.0916

MCMC Algorithms

- Problem: produce samples x from a given distribution π_x defined up to a constant.
- Solution: use a Markovian random walk x^t converging to the required stationary distribution.
- Detailed balance: $T_{yx} \pi_x = T_{xy} \pi_y$
- Only local moves are allowed: x^{t+1} is close to x^t

Detailed balance

Random walker distribution evolves according to

$$P_x^{t+1} = \sum_y T_{xy} P_y^t$$

Assuming $\sum_{x} T_{xy}$ 1 one can rewrite the equation as

$$\sum_{y} \left[T_{yx} P_x^{t+1} - T_{xy} P_y^t \right] = 0$$

Balance condition: $\forall t: P_x^t = \pi_x$

$$\sum_{y} \left[T_{yx} \pi_x - T_{xy} \pi_y \right] = 0$$

Detailed balance (reversibility, equilibrium): $T_{yx}\pi_x = T_{xy}\pi_y$

Sufficient but not necessary!

Loop decomposition

It is useful to consider ergodic flux matrix $Q_{xy} = T_{xy}\pi_y$

Detailed balance = symmetry of ergodic flow: $Q_{xy} = Q_{yx}$

Asymmetric part of Q_{xy} can be decomposed:

$$Q_{xy} - Q_{yx} = \sum_{\alpha} J_{\alpha} \left(C_{xy}^{\alpha} - C_{yx}^{\alpha} \right)$$

Here J_{α} is amplitude of the probability flow C_{xy}^{α} is adjacency matrix of the loop

Flow amplitudes are bounded by the reversible part

Physical analogies

- PDF evolution ⇔ Diffusion-advection of passive scalar
- Balance condition ⇔ Flow Incompressibility
- Reversibility ⇔ Diffusion
- Irreversible motion ⇔ Advection
- Loops ⇔ Vortices

Slow convergence

Several types of distributions are characterized by slow mixing:

- Glassy landscapes: Regions that dominate the partition function are separated by "energy barriers"
- Entropy barriers: Regions of high probability are separated by narrow paths (high probability but small entropy)
- Single region with high probability of large size (entropy)

Acceleration with loops

Irreversibility can significantly accelerate random walks on regular lattices.

Other approaches?

Naive way:

- Exponentially many loops required for real systems
- Flow amplitude can not be determined based on local information

Proposed approach:

- Calculate irreversible transition probabilities "on a fly"
- Do not enforce the balance condition, instead compensate for compressibility

Skewed detailed balance

- Create two copies of the system ('+' and '-')
- Decompose transition probabilities as

$$T_{xy} = T_{xy}^{(+)} + T_{xy}^{(-)}$$
 $T_{xy}^{(+)} \pi_x = T_{yx}^{(-)} \pi_y$

 Compensate the compressibility by introducing transition between copies:

$$\Lambda_{xx}^{(\pm,\mp)} = \max \left\{ 0, \sum_{y} T_{xy}^{(\pm)} - T_{xy}^{\mp} \right\}$$

Skewed detailed balance 2

• Extended matrix satisfies balance condition and corresponds to irreversible process:

$$\hat{\mathscr{T}} = \left(egin{array}{ccc} \hat{T}^{(+)} & \hat{\Lambda}^{(+,-)} \ \hat{\Lambda}^{(-,+)} & \hat{T}^{(-)} \end{array}
ight)$$

- Random walk becomes non-Markovian in original space.
- System copy index is analogous to momentum in physics: diffusive motion turns into ballistic/super-diffusive.
- No complexity overhead for Glauber and other local dynamics.

Spin cluster model

Simple example: classical Ising model defined on a full graph:

$$\pi_{S_{\square}.S_N} = Z^{-\square} \qquad \left[\frac{J}{\sum_{i,j} S_i S_j} \right]$$

System experiences phase transition at J=1. Anomalous fluctuations of magnetization $\delta S \sim N^{3/4}$ lead to critical slowdown of Glauber dynamics: $T \sim N^{3/2}$

Irreversible dynamics: flip only positive spins in first copy, and only negative in second.

Spin cluster model: results

Dynamics is strongly accelerated: convergence time (defined via correlation function of S) decreases to $T \sim N^{3/4}$ ($T \sim N^{0.85}$ in simulations)

Ising model

Two-dimensional Ising model shares a lot of properties in the critical point. One can try the same algorithm.

Constant factor acceleration is observed ($\sim 3x$), however the constant does not depend on system size.

Flipping between the copies happens too frequently $(T\sim L^{1/2})$

Extensions 1

Mix irreversible fluxes in the same direction (2N copies instead of 2)

$$\sum_{y} \left[T_{yx}^{(\alpha)} \pi_{x} - T_{xy}^{(\alpha)} \pi_{y} \right] - \sum_{\beta} \Lambda_{xx}^{(\alpha,\beta)} \pi_{x} = 0$$

Extensions 2

Mix irreversible fluxes in different directions (i.e. horizontal and vertical).

Extensions 3

Introduce generalized "momentum" variable. Break symmetry in momentum space.

Phase transitions

- Explore the full phase space high-wavelength spatial harmonics of the order parameter (i.e. magnetization)
- Make the dynamics more adaptive:

Reversible dynamics :
$$\partial_t M_k = -\Gamma_k M_k + \xi_k(t)$$

 $\Gamma_k \sim k^{\chi}, \quad k \to 0$

Irreversible (Hamiltonian): $\partial_{tt}M_k = -\Gamma_k^2 M_k$

Separate momentum variables for different parts of space

Other approaches?

Broken DB:

- Lifting operation (*Chen*, *Lovasz*, *Pak 99*) theoretical limits of acceleration $(T_{irr} > \sqrt{T_{rev}})$. Some toy models: (*Diaconis*, *Holmes*, *Neal 97*). Applications to distributed computing: (*Jung*, *Shah*, *Shin 07*)
- Hamiltonian (Hybrid) Monte Carlo (*Horvath*, *Kennedy 88*) continuum limit of our construction.
- Successive over-relaxation (*Adler 81*), sequential updating (*Ren, Orkoulas 06*) another way of producing irreversible fluxes.

Reversible algorithms:

- Cluster algorithms (*Swendsen*, *Wang 87*) teleportation instead of ballistic motion
- Simulated tempering (*Marinari*, *Parisi* 92) several copies of the system, but with different distributions